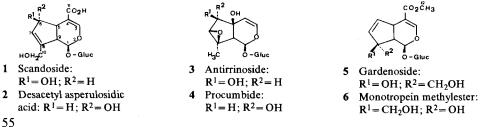
166. The Configuration of Naturally Occurring Iridoid Glucosides at C(6) and C(8): A Complementary Assignment Aid by ¹³C-NMR. Spectroscopy

by Ratan K. Chaudhuri, Fatma Ü. Afifi-Yazar and Otto Sticher

Eidgenössische Technische Hochschule, Pharmazeutisches Institut, ETH-Zentrum, CH-8092 Zürich

(6.VI.79)

Summary


Evidence is presented which demonstrates that ¹³C-NMR. spectroscopy can be used with confidence in evaluating the configuration of R^1R^2CHOH centers at C(6) and C(8) of iridoid glucosides.

The configurational analysis with the help of NMR. carried out so far in this series used the proton [1]. This nucleus, however, suffers from two deficiencies: (i) proton spectra are complicated by spin-spin coupling which produces frequent overlap and renders spectrum interpretation difficult; (ii) the chemical shift differences of a proton in only slightly different environments are small and in the same order of magnitude as the long-range shielding effects. Thanks to the sensitivity of the ¹³C-chemical shifts to configurational changes, the method is ideally suited for distinguishing stereoisomers.

Several reports (cf. e.g. [2-4]) have appeared on the ¹³C-NMR. spectra of iridoid glucosides. However, no attempt has yet been made in this series to utilize the striking sensitivity of the ¹³C-chemical shifts to steric effects. We have recently reported the structure of some new ester iridoids by the aid of ¹³C-NMR. spectra [5] [6]. In order to establish a data basis for future structural studies and for throwing some light on the stereochemical dependence of ¹³C-chemical shifts, the ¹³C-spectra of three stereoisomeric pairs of iridoids are examined.

The ¹³C-NMR. spectral analysis of iridoid glucosides 1, 2, 3, 4, 5 and 6 gave the needed stereochemical information. The spectra studied here are presented in the *Table*. The assignments [7] of the ¹³C-NMR. signals were based on single frequency off-resonance decoupling technique, application of known chemical shift rules for hydroxy substitution and comparison among related compounds [8].

Inspection of the ¹³C-NMR. spectra of C (6)-epimers shows that on going from equatorial to axial substitution, *e.g.*, 1 to 2 or 3 to 4 a shielding (y-effect) (~ 3 ppm) is observed for the C(4) whereas the C(8) has experienced an approximately equivalent deshielding. A δ -effect of the substituent at C(6) exerted on C(3) in the

0018-019X/79/5/1603-02\$01.00/0

© 1979 Schweizerische Chemische Gesellschaft

C-Atom	1	2	3	4	5	6
1	98.80	101.53	94.56	95.56	94.41	95.15
3	153.98	155.62	142.90	144.12	152.02	152.48
4	111.02	108.27	107.45	104.45	111.60	110.53
5	46.97	42.57	74.52	80.01	38.92	38.80
6	82.38	75.33	77.29	77.69	135.80 ^b)	137.54
7	129.92	129.89	66.01	65.75	135.90 ^b)	133.65
8	147.31	151.32	64.18	66.83	86.34	85.89
9	45.94	45.73	52.72	52.88	52.40	45.42
10	61.06	61.61	17.53	17.59	67.17	68.26
11	172.07	170.92	-	-	169.69	168.97
12	_	-	-	~	51.62	51.58

Table. ¹³C-NMR. Data of Iridoids^a)

C(6)-epimers, although of lower extent (~1.5 ppm), is observed. The shielding effects can be rationalized on the basis of electric field effects [9] and find precedence in other systems [10]. It is of interest to point out the different chemical shift values for C(6) associated with the equatorial (1) and axial (2) hydroxyl function at this carbon atom.

Comparison of the C(1)-, C(6)-, C(7)- and C(9)-chemical shifts of one of the C(8)-epimers with those of the other distinguish the two compounds easily and reveal their C(8)-configurations as depicted in stereostructures 5 and 6. Since the cyclopentane ring is frequently substituted, shifts caused to C(7) and C(6) with a change in configuration at C(8), may not be useful. It has recently been shown [4] [11] that changes in substituent or configuration at C(7) have little influence on the chemical shift value of C(9). Thus, the C(9)-chemical shift of C(8)-epimers is a diagnostic constant for revealing the C(8)-configuration of such natural products [11]. The shift induced on the β -carbon atom C(9) with the change of the configuration at C(8) can be rationalized on the basis of a C_{\beta}-electron-cloud distortion by the fluctuating C_{\alpha}-OH dipole [10].

These findings show clearly that ¹³C-NMR. spectroscopy provides a useful sensitive method for determining the configuration of R^1R^2CHOH centers at C(6) and C(8) in iridoids.

Acknowledgments. - The financial support by Wilhelm Doerenkamp and Swiss National Science Foundations is gratefully acknowledged.

REFERENCES

- [1] H. Rimpler, Planta med. 33, 313 (1978).
- [2] G. Schilling, W.-D. Henkels, K. Künstler, K. Weinges, P. Kloss & H. Jaggy, Liebigs Ann. Chem. 230, 1975.
- [3] F. Bailleul, P. Delaveau, A. Rabaron, M. Platt & M. Koch, Phytochemistry 16, 723 (1977).
- [4] K. Bock, S. R. Jensen, B.J. Nielsen & V. Norm, Phytochemistry 17, 753 (1978).
- [5] O. Sticher & F. U. Afifi-Yazar, Helv. 62, 530; 535 (1979).
- [6] R.K. Chaudhuri & O. Sticher, Helv. 62, 644 (1979).
- [7] F. W. Wehrli & T. Wirthlin, 'Interpretation of Carbon-13-NMR Spectra', Heyden, London 1976.
- [8] R. K. Chaudhuri, F. Ü. Afifi-Yazar & O. Sticher, to be published.
- [9] J.G. Batchelor, J.H. Prestegard, R.J. Cushhey & S.R. Lipsky, J. Amer. chem. Soc. 95, 6358 (1973).
- [10] H.-J. Schneider & V. Hoppen, J. org. Chemistry 43, 3866 (1978) and references cited therein.
- [11] R.K. Chaudhuri, O. Sticher & T. Winkler, Tetrahedron Letters, communicated.